Complex Rice Systems; Putting Ecosystem Restoration into Practice

Uma Khumairoh1,2, Egbert A.Lantinga1, Jeroen C.J. Groot1, Rogier Schulte1, Didik Suprayogo2

2Integrated Organic Farming Systems Research Centre, Faculty of Agriculture, Brawijaya University, Indonesia
1Farming Systems Ecology Group
Wageningen University & Research, The Netherlands
Outline

• Global rice production and the importance of ecosystem function restoration

• CRS project to restore ecosystem functions in rice production systems

• Challenge at mainstreaming CRS, solution and recommendation
Indonesian rice position

The top three rice consuming countries

- China
- India
- Indonesia

(Million metric tons per year)

Major rice producers

- China
- India
- Indonesia
- Bangladesh

(Million metric tons per year)

Major rice importer countries

- China
- Nigeria
- EU-27
- Saudi Arabia
- Indonesia
- Philippines

(FAO, 2016)
Rice ecosystems

- Upland to lowland
- Rainfed to irrigated
- Deepwater to marsh tidal

Links:
- [Upland to lowland](http://asiamonsun.blogspot.nl/)
- [Rainfed to irrigated](http://www.indonesiapanen.com/2301/nasib-petani-sawah-lebak-di-tengah-madu-hti-dan-sawit/)
- [Deepwater to marsh tidal](http://budidayatanamanpadi-sawah.blogspot.nl/2016/01/teknik-pengelolaan-padi-sawah-pada.html)
Green revolution on rice

Great benefit at early development, BUT later
- Widespread environmental pollution through water flow
- Kill beneficial organisms
- Increase biodiversity loss → Ecosystem dysfunction
- External input dependency
- Vulnerable to environmental and market changes

Ecosystem restoration → to reduce agro-chemical costs, pollution and improve smallholders and human livelihood

Complex rice system project

- A collaboration IORC, UB and FSE, WUR
- Initially conducted in East Java, but will be replicated in Sumatera
- Using three-step method: experiment, workshop and FFS
Experiment with CRS to restore ecosystem functions
Workshop on CRS

- Participated by farmers. Researchers and provincial and district authorities of agricultural and food security bureau
- To present initial results of tested prototype in four districts of East Java and participatory to improve the design
Participatory learning through FFS

- To disseminate knowledge on CRS
- To provide training for farmers to grow diverse plants and raise animals
- To get feedback from farmers on the design based on the local practice and knowledge
Barriers/ challenges to mainstreaming the activities

• Initial capital outlay: building facilities e.g. fencing, duck housing, fish pond: initial inputs (fish, ducklings, diverse plant seeds)

• Illiteracy and lack to information access impede knowledge transfer on agro-ecology when the local knowledge has lost

• Lack of immediate benefits of CRS at first rice cropping cycle
Coping the challenges to mainstreaming the activities and recommendation

- Adopting a step-by-step approach to implement CRS across two to three rice-growing cycles
- Starting with the construction of the fish pond
- Cooperation with duck farmers
- Provide appropriate training e.g. FFS
- Using pictures and videos to address the illiteracy of FFS participants
- Include elements that can immediately add farmer income in an easy way e.g. vegetables as border plants
Thank you